Optical transmission enhancement through chemically tuned two-dimensional bismuth chalcogenide nanoplates.

نویسندگان

  • Jie Yao
  • Kristie J Koski
  • Weidong Luo
  • Judy J Cha
  • Liangbing Hu
  • Desheng Kong
  • Vijay Kris Narasimhan
  • Kaifu Huo
  • Yi Cui
چکیده

Layer-structured two-dimensional nanomaterials are a family of materials with strong covalent bonding within layers and weak van der Waals interaction between layers, whose vertical thickness can be thinned down to few nanometer and even single atomic layer. Bismuth chalcogenides are examples of such two-dimensional materials. Here, we present our discovery of significant enhancement of light transmission through thin nanoplates of layered bismuth chalcogenides by intercalation of copper atoms, which is on the contrary to most bulk materials in which doping reduces the light transmission. This surprising behaviour results from two mechanisms: chemical tuning effect of substantial reduction of material absorption after intercalation and nanophotonic effect of zero-wave anti-reflection unique to ultra-small thickness of nanoplates. We demonstrate that the synergy of these two effects in two-dimensional nanostructures can be exploited for various optoelectronic applications including transparent electrode. The intercalation mechanism allows potential dynamic tuning capability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-dimensional chalcogenide nanoplates as tunable metamaterials via chemical intercalation.

New plasmonic materials with tunable properties are in great need for nanophotonics and metamaterials applications. Here we present two-dimensional layered, metal chalcogenides as tunable metamaterials that feature both dielectric photonic and plasmonic modes across a wide spectral range from the infrared to ultraviolet. The anisotropic layered structure allows intercalation of organic molecule...

متن کامل

Enhancing nanoparticle electrodynamics with gold nanoplate mirrors.

Mirrors and optical cavities can modify and enhance matter-radiation interactions. Here we report that chemically synthesized Au nanoplates can serve as micrometer-size mirrors that enhance electrodynamic interactions. Because of their plasmonic properties, the Au nanoplates enhance the brightness of scattered light from Ag nanoparticles near the nanoplate surface in dark-field microscopy. More...

متن کامل

Self-Assembly of High Density of Triangular Silver Nanoplate Films Promoted by 3-Aminopropyltrimethoxysilane

In this work, we studied the structure of synthesized triangular silver nanoplates in solution and the growth of the nanoplates on a silicon surface using 3-aminopropyltrimethoxysilane (APTMS) as a coupling agent. The triangular-shaped colloidal silver nanoplates were simply synthesized by a direct chemical reduction approach. We studied the three characteristic peaks of the unique optical abso...

متن کامل

A twin-free single-crystal Ag nanoplate plasmonic platform: hybridization of the optical nano-antenna and surface plasmon active surface.

Surface plasmons based on metallic nanostructures enable light manipulation beyond the optical diffraction limit. We have epitaxially synthesized twin-free single-crystal Ag nanoplates on SrTiO3 substrates. Unlike the nanoplates synthesized in a solution phase, these nanoplates have perfectly clean surfaces as well as a quite large size of tens of micrometers. As-synthesized defect-free single-...

متن کامل

Thermoelectric transport in surface- and antimony-doped bismuth telluride nanoplates

Thermoelectric transport in surfaceand antimony-doped bismuth telluride nanoplates Michael Thompson Pettes,1,2 Jaehyun Kim,1 Wei Wu,2 Karen C. Bustillo,3 and Li Shi1,a 1Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA 2Department of Mechanical Engineering and Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, US...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014